

Introduction to computational studies of electronic structure of nanosystems Educational subject description sheet

Basic information

Study programme Fizyka (Physics of Advance Processing) Speciality	d Materials for Energy	Didactic cycle 2023/24 Subject code 04FENS.21S.03242.23	
Organizational unit Faculty of Physics		Lecture languages English Course type	
Study level		Elective	
Second-cycle programme Study form Full-time		Block specialty subjects	
Education profile General academic			
Subject coordinator	Tomasz Kostyrko, Konrad Ka	apcia	
Lecturer	Tomasz Kostyrko, Konrad Kapcia		
Period Semester 1	Activities and hours • Lecture: 30, Graded credit		Number of ECTS points 3

Goals

Code	Goal
C1	to provide knowledge of the fundamentals of the methods of computations of electronic structure of matter, including the density functional theory as well as other first principle approaches
C2	to impart knowledge of specific aspects of the computational methods in applications to nanostructures
С3	develop the ability for understanding of advanced computation methods for first principles description of solids
C4	practising the use of literature sources

Subject learning outcomes

Code	Outcomes in terms of	Learning outcomes	Examination methods
Knowled	lge - Student:	1	
W1	knows the mathematical formulation of the first principles approaches and basic theorems upon which the methods are based	FEN_K2_W01, FEN_K2_W02, FEN_K2_W03, FEN_K2_W04	Oral colloquium
W2	knows the methodology of various ab initio computational packages	FEN_K2_W02, FEN_K2_W03, FEN_K2_W06	Oral colloquium
Skills - S	Student:		
U1	is able to uderstand physical theoretical concepts used in computational methods of electronic structure of matter	FEN_K2_U01, FEN_K2_U02, FEN_K2_U03, FEN_K2_U03	Oral colloquium
U2	can evaluate the computational methods as concerns their scope and effectiveness, precision and complexity and to make a proper choice of a method to use for the specific research problem	FEN_K2_U01, FEN_K2_U03, FEN_K2_U04, FEN_K2_U05	Oral colloquium
U3	is able to practically use the computational package of choice to study the electronic structure of simple nanostructures and analyze the results of the computations in physical terms	FEN_K2_U01, FEN_K2_U03	Oral colloquium
Social c	ompetences - Student:		
К1	can explain the role of ab initio methods in physics to people outside the field	FEN_K2_K01, FEN_K2_K02, FEN_K2_K03	Oral colloquium

Study content

No.	Course content	Subject learning outcomes	Activities
1.	A review of fundamental interactions relevant for the electronic structures of atoms, molecules and condensed matter systems.	W1, U1	Lecture
2.	A concept of electronic correlations.	W1, W2, U1	Lecture

No.	Course content	Subject learning outcomes	Activities
3.	A formulation of basic principles of the Hartree-Fock method and the density functional theory (within the self-consistent approach).	W1, W2, U1	Lecture
4.	Various choices of basis of functions in first principles approaches.	W1, W2, U1, U2	Lecture
5.	The pseudopotential method.	W1, W2, U1, U2	Lecture
6.	Methods of optimizing the spatial structures of molecules and condensed systems: molecular dynamics, conjugate gradients methods.	W1, W2, U1, U2	Lecture
7.	Lattice dynamics - harmonic approximation and anharmonicity.	W1, W2, U1, U2	Lecture
8.	Overview of available implementations of first principles approaches (SIESTA, Quantum Espresso, Abinit, VASP, Wien2k).	W2, U2, U3	Lecture
9.	Detailed analysis of simple case studies performed with a help of the selected computational packages (including nanosystems modelling).	W2, U2, U3, K1	Lecture

Additional information

Activities	Teaching and learning methods and activities
Lecture	Lecture with a multimedia presentation of selected issues

Activities	Credit conditions
Lecture	 Oral colloquium: several open questions (maximum 100%). Grading scale with applied percentage distribution: excellent (5.0): achievement of the student's expected learning outcomes at a minimum of 92.0%. very good (4.5): achievement by the student of the desired learning outcomes ranging from 84.0% - 91.9%. good (4.0): achievement of student learning outcomes 76.0% - 83.9%. average (3.5): achievement of student learning outcomes 68.0% - 75.9%. satisfactory (3.0): attainment of the student learning outcomes within 60.0% - 67.9%. unsatisfactory (2.0): failure of the student to achieve the expected learning outcomes below 60.0%.

Literature

Obligatory

- 1. Parr, R. G.; Yang, W. (1989). Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press
- Axel D. Becke. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014).
- 3. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)

Optional

1. J. M. Soler et al. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Cond. Mat. 14, 2745 (2002).

Calculation of ECTS points

Activities	Activity hours*
Lecture	30
Reading the indicated literature	15
Preparation for classes	15
Preparation for the exam	15
Student workload	Hours 75
Number of ECTS points	ECTS 3

* academic hour = 45 minutes

Efekty uczenia się dla kierunku

Kod	Treść
FEN_K2_K01	The graduate is ready to critically evaluate own knowledge and received content
FEN_K2_K02	The graduate is ready to recognize the importance of knowledge in solving cognitive and practical problems and seeking expert opinion (also from other scientific disciplines) to overcome difficulties during independent problem solving
FEN_K2_K03	The graduate is ready to fulfill social obligations, inspire and organize activities for the benefit of the social environment and initiate activities in the public interest
FEN_K2_U01	The graduate can use their knowledge to formulate and solve complex and unusual problems in the field of physical sciences; select and apply appropriate methods and tools necessary to solve a given problem (including advanced IT techniques), as well as adapt existing methods and tools or develop completely new ones
FEN_K2_U02	The graduate can find the necessary information in the professional literature, databases and other sources, in particular in scientific journals basic to physics, and perform critical analysis, synthesis and creative interpretation of the collected information
FEN_K2_U03	The graduate can formulate and test hypotheses related to simple research problems in physics (plan and perform observations, experiments, theoretical calculations or computer simulations and critically evaluate and discuss the results obtained)
FEN_K2_U04	The graduate can prepare, for various audiences, oral presentations and written studies presenting specialized topics in the field of physical sciences in a communicative way, as well as debate on such topics
FEN_K2_U05	The graduate can use English in accordance with the requirements set out for level B2+ of the Common European Framework of Reference for Languages, as well as specialist English terminology in the field of physical sciences
FEN_K2_W01	The graduate knows and understands in-depth selected facts, phenomena, concepts and theories specific to physics and complex relationships between them (constituting advanced general knowledge in the field of physical sciences and representing both key and other selected issues in the field of advanced detailed knowledge in this discipline)
FEN_K2_W02	The graduate knows and understands in-depth selected research methods and tools as well as mathematical models used in physics
FEN_K2_W03	The graduate knows and understands in-depth selected computational methods and information technology tools and techniques used to solve complex problems in physics
FEN_K2_W04	The graduate knows and understands main development trends in the discipline of physical sciences
FEN_K2_W06	The graduate knows and understands basic concepts and principles in the area of industrial property protection and copyright