

Electron microscopy Educational subject description sheet

Basic information

Study programme

Fizyka (Physics of Advanced Materials for Energy Processing)

Speciality

-

Organizational unit

Faculty of Physics

Study level

Second-cycle programme

Study form

Full-time

Education profile

General academic

Didactic cycle

2023/24

Subject code

04FENS.24S.03269.23

Lecture languages

English

Course type

Elective

Block

specialty subjects

Subject coordinator	Grzegorz Nowaczyk
Lecturer	Grzegorz Nowaczyk

Period Semester 3	Activities and hours • Laboratories: 15. Graded credit	Number of ECTS points
Semester 5	Laboratories. 13, Graded Credit	2

Goals

Code	Code Goal	
C1 to present theoretical background of electron microscopy including basic aspects of electron beam interaction of electrons with matter, electron microscope's onstruction, types of information that caprovided with electron microscopy, etc.		
C2	to conduct experiment by means of EM microscopes including observation of morphologyof solid-state samples, diffraction experiments, elemental analysis by EDS spectroscopy	
С3	to interpret acquired data in quantitative and qualitative terms	

Wygenerowano: 2025-06-07 15:49 1 / 4

Subject learning outcomes

Code	Outcomes in terms of	Learning outcomes	Examination methods	
Knowledge - Student:				
W1	a student will be able to explain the theoretical aspects of electron beam	FEN_K2_W01, FEN_K2_W02, FEN_K2_W03, FEN_K2_W04, FEN_K2_W05	Report	
W2	a student will be able to explain types of interaction of electrons with matter	FEN_K2_W01, FEN_K2_W02, FEN_K2_W03, FEN_K2_W04, FEN_K2_W05	Report	
W3	a student will be able to describe construction and function of particular parts of electron microscopes	FEN_K2_W01, FEN_K2_W02, FEN_K2_W03, FEN_K2_W04, FEN_K2_W05	Report	
Skills - 9	Student:			
U1	a student will be able to conduct simple experiment of imaging and diffraction	FEN_K2_U01, FEN_K2_U02, FEN_K2_U03, FEN_K2_U04, FEN_K2_U05	Report	

Study content

No.	Course content	Subject learning outcomes	Activities
Generating electron beam, microscope alignment		W1, W3	Laboratories
2.	Sample preparation using various techniques	W2, W3, U1	Laboratories
3.	Image acquisition and processing	W1, W2, W3, U1	Laboratories
4.	Analysis of data using dedicated software	U1	Laboratories

Additional information

Activities	Teaching and learning methods and activities	
Laboratories	Discussion, Laboratory method, Research method (scientific inquiry), Demonstration and observation, Work in groups	

Activities	Credit conditions	
Laboratories	Reporta based on conducted studies and theoretical introduction	

Literature

Obligatory

1. Williams, David B., Carter, C. Barry, Transmission Electron Microscopy: A Textbook for Materials Science, Springer 2009

Calculation of ECTS points

Activities	Activity hours*
Laboratories	15
Report preparation	20
Preparation for classes	5
Reading the indicated literature	10
Student workload	Hours 50
Number of ECTS points	ECTS 2

^{*} academic hour = 45 minutes

Efekty uczenia się dla kierunku

Kod	Treść	
FEN_K2_U01	The graduate can use their knowledge to formulate and solve complex and unusual problems in the field of physical sciences; select and apply appropriate methods and tools necessary to solve a given problem (including advanced IT techniques), as well as adapt existing methods and tools or develop completely new ones	
FEN_K2_U02	The graduate can find the necessary information in the professional literature, databases and other sources, in particular in scientific journals basic to physics, and perform critical analysis, synthesis and creative interpretation of the collected information	
FEN_K2_U03	The graduate can formulate and test hypotheses related to simple research problems in physics (plan and perform observations, experiments, theoretical calculations or computer simulations and critically evaluate and discuss the results obtained)	
FEN_K2_U04	The graduate can prepare, for various audiences, oral presentations and written studies presenting specialized topics in the field of physical sciences in a communicative way, as well as debate on such topics	
FEN_K2_U05	The graduate can use English in accordance with the requirements set out for level B2+ of the Common European Framework of Reference for Languages, as well as specialist English terminology in the field of physical sciences	
FEN_K2_W01	The graduate knows and understands in-depth selected facts, phenomena, concepts and theories speci to physics and complex relationships between them (constituting advanced general knowledge in the fi of physical sciences and representing both key and other selected issues in the field of advanced detail knowledge in this discipline)	
FEN_K2_W02	The graduate knows and understands in-depth selected research methods and tools as well as mathematical models used in physics	
FEN_K2_W03	The graduate knows and understands in-depth selected computational methods and information technology tools and techniques used to solve complex problems in physics	
FEN_K2_W04	The graduate knows and understands main development trends in the discipline of physical sciences	
FEN_K2_W05	The graduate knows and understands the role of physical sciences in the context of fundamental dilemmas and challenges of modern civilization	