

Electric and thermoelectric transport at the nanoscale Educational subject description sheet

Basic information

Study programme

Fizyka (Physics of Advanced Materials for Energy Processing)

Speciality

-

Organizational unit

Faculty of Physics and Astronomy

Study level

Second-cycle programme

Study form

Full-time

Education profile

General academic

Didactic cycle

2024/25

Subject code

04FENS.21S.03247.24

Lecture languages

English

Course type

Elective

Block

specialty subjects

Subject coordinator	Ireneusz Weymann
Lecturer	Ireneusz Weymann

Period Semester 1	Activities and hours • Lecture: 30, Graded credit	Number of ECTS points
		3

Goals

Code	Goal	
C1	The aim of the course is to teach the basic formalism and discuss the effects emerging in electric and thermoelectric transport properties of nanostructures.	

Subject learning outcomes

Wygenerowano: 2025-06-07 14:27 1 / 4

Code	Outcomes in terms of	Learning outcomes	Examination methods	
Knowle	Knowledge - Student:			
W1	knows the basic trends in nanoscience and quantum effects that emerge in transport through nanostructures	FEN_K2_W01, FEN_K2_W02, FEN_K2_W03, FEN_K2_W04	Written colloquium, Oral colloquium	
W2	knows the role of nanotechnology in the development of civilization	FEN_K2_W05	Written colloquium, Oral colloquium	
W3	knows the basic formalism describing electric and thermoelectric transport in nanostructures	FEN_K2_W02, FEN_K2_W03	Written colloquium, Oral colloquium	
Skills - Student:				
U1	is able to study the transport properties of nanostructures using simple models and methods	FEN_K2_U01	Written colloquium, Oral colloquium	
Social competences - Student:				
K1	is ready to discuss contemporary challenges of modern nanoscale technologies	FEN_K2_K01, FEN_K2_K02	Written colloquium, Oral colloquium	

Study content

No.	Course content	Subject learning outcomes	Activities
1.	Introduction: Electric and thermoelectric properties: classical versus quantum	W1, W2, W3, U1, K1	Lecture
2.	Quantum interference effects in low-dimensional systems, transmission through a double tunnel barrier, Breit-Wigner formula	W1, W2, W3, U1, K1	Lecture
3.	Scattering theory for electric and thermoelectric transport. Landauer formula	W1, W2, W3, U1, K1	Lecture
4.	Linear response theory: Seebeck coefficient, heat conductance and thermoelectric figure of merit.	W1, W2, W3, U1, K1	Lecture
5.	Thermoelectricity as a probe of correlations in nanoscale systems, nanoscale heat engines	W1, W2, W3, U1, K1	Lecture
6.	Single-electron charging effects, Coulomb blockade, Kondo effect	W1, W2, W3, U1, K1	Lecture

Additional information

Activities	Teaching and learning methods and activities	
Lecture	Lecture with a multimedia presentation of selected issues, Conversation lecture, Problem-based lecture	

Activities	Credit conditions
Lecture	The students have to pass the written exam, which will be followed by optional oral exam and discussion. Assessment criteria: Very good (bdb; 5,0): 90-100% of final score Good plus (+db; 4,5): 80-89% of final score Good (db; 4,0): 60-79% of final score Satisfactory plus (+dst; 3,5): 60-69% of final score Satisfactory (dst; 3,0): 50-59% of final score Unsatisfactory (ndst; 2,0): 0-49% of final score

Literature

Obligatory

- 1. Giuliano Benenti, Giulio Casati, Keiji Saito, and Robert S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, Physics Reports 694, 1 (2017)
- 2. Yuli Nazarov and Yaroslav Blanter, Quantum Transport (Cambridge 2009).
- 3. Massimiliano Di Ventra, Electrical Transport in Nanoscale Systems (Cambridge 2008)
- 4. Tero Heikkila, The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures (Oxford Univ. Press 2013)

Calculation of ECTS points

Activities	Activity hours*
Lecture	30
Preparation for the exam	40
Preparation for classes	20
Student workload	Hours 90
Number of ECTS points	ECTS 3

^{*} academic hour = 45 minutes

Efekty uczenia się dla kierunku

Kod	Treść	
FEN_K2_K01	The graduate is ready to critically evaluate own knowledge and received content	
FEN_K2_K02	The graduate is ready to recognize the importance of knowledge in solving cognitive and practical problems and seeking expert opinion (also from other scientific disciplines) to overcome difficulties during independent problem solving	
FEN_K2_U01	The graduate can use their knowledge to formulate and solve complex and unusual problems in the field of physical sciences; select and apply appropriate methods and tools necessary to solve a given problem (including advanced IT techniques), as well as adapt existing methods and tools or develop completely new ones	
FEN_K2_W01	knowledge in this discipline) The graduate knows and understands in-denth selected research methods and tools as well as	
FEN_K2_W02		
FEN_K2_W03	The graduate knows and understands in-depth selected computational methods and information technology tools and techniques used to solve complex problems in physics	
FEN_K2_W04	The graduate knows and understands main development trends in the discipline of physical sciences	
FEN_K2_W05	The graduate knows and understands the role of physical sciences in the context of fundamental dilemmas and challenges of modern civilization	