

## Biophotovoltaic materials Educational subject description sheet

#### **Basic information**

**Study programme** 

Fizyka (Physics of Advanced Materials for Energy Processing)

**Speciality** 

-

Organizational unit

Faculty of Physics and Astronomy

Study level

Second-cycle programme

Study form

Full-time

**Education profile** 

General academic

**Didactic cycle** 

2024/25

Subject code

04FENS.21S.03237.24

**Lecture languages** 

English

**Course type** 

Elective

**Block** 

specialty subjects

| Subject coordinator | Krzysztof Gibasiewicz |
|---------------------|-----------------------|
| Lecturer            | Krzysztof Gibasiewicz |

| Period     | Activities and hours       | Number of   |
|------------|----------------------------|-------------|
| Semester 1 | Lecture: 30, Graded credit | ECTS points |
|            |                            | 3           |

#### **Goals**

| Code | Goal                                                                                                                                                                                                                                                                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1   | The goal of the lecture is to introduce students to different aspects of biophotovoltaic material science including: a) basic principles of photosynthetic light conversion, b) basic theories of inter-molecular energy and electron transfer, c) optical spectroscopy and electrochemical techniques, and d) operation of biophotovoltaic systems. |

Wygenerowano: 2025-06-06 20:55 1 / 4

# **Subject learning outcomes**

| Code              | Outcomes in terms of                                                                                                                                                                                                                        | Learning outcomes         | Examination methods |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|
| Knowled           | Knowledge - Student:                                                                                                                                                                                                                        |                           |                     |
| W1                | knows the principles of photosynthetic light conversion                                                                                                                                                                                     | FEN_K2_W01                | Test                |
| W2                | is able to explain the relationship between the<br>structure and function of selected light-converting<br>proteins (purple bacterial reaction centers and<br>Photosystem I)                                                                 | FEN_K2_W01                | Test                |
| W3                | knows the Förster and Dexter theories of intermolecular energy transport as well as Marcus theory of electron transport                                                                                                                     | FEN_K2_W01                | Test                |
| W4                | knows the mode of operation of basic experimental instrumentation for optical electrochemical, and spectroelectrochemical measurements (for steady-state and time-resolved absorption and fluorescence, chronoamperometry, voltamperometry) | FEN_K2_W01                | Test                |
| W5                | is familiar with photovoltaic cells containing biohybrid materials composed of photosynthetic proteins and inorganic components (conducting glass, semiconductors, conducting gels)                                                         | FEN_K2_W01,<br>FEN_K2_W05 | Test                |
| Skills - Student: |                                                                                                                                                                                                                                             |                           |                     |
| U1                | learns specialized English language                                                                                                                                                                                                         | FEN_K2_U05                | Test                |

# Study content

| No. | Course content                                                                                                 | Subject learning outcomes | Activities |
|-----|----------------------------------------------------------------------------------------------------------------|---------------------------|------------|
| 1.  | Principles of photosynthetic light conversion in photosynthetic proteins                                       | W1, W2, U1                | Lecture    |
| 2.  | Förster and Dexter theories of intermolecular energy transport; Marcus theory of electron transport            | W3, U1                    | Lecture    |
| 3.  | Basic optical and electrochemical experimental techniques                                                      | W4, U1                    | Lecture    |
| 4.  | Photovoltaic cells containing biohybrid materials composed of photosynthetic proteins and inorganic components | W5, U1                    | Lecture    |

## **Additional information**

| Activities Teaching and learning methods and activities |                                                                                          |
|---------------------------------------------------------|------------------------------------------------------------------------------------------|
| Lecture                                                 | Lecture with a multimedia presentation of selected issues, Demonstration and observation |

| Activities | Credit conditions                   |
|------------|-------------------------------------|
| Lecture    | Positive mark of the student's test |

## Literature

## **Obligatory**

- 1. Robert E. Blankenship, "Molecular Mechanisms of Photosynthesis. Second edition." Wiley Blackwell, 2014
- 2. Wiliam W. Parson, "Modern Optical Spectroscopy", Springer-Verlag Berlin Heidelberg 2007
- 3. Dale A. C. Brownson, Craig E. Banks, "The Handbook of Graphene Electrochemistry", Springer-Verlag London Ltd. 2014

## **Calculation of ECTS points**

| Activities               | Activity hours* |
|--------------------------|-----------------|
| Lecture                  | 30              |
| Preparation for the exam | 45              |
| Student workload         | Hours<br>75     |
| Number of ECTS points    | ECTS<br>3       |

<sup>\*</sup> academic hour = 45 minutes

# Efekty uczenia się dla kierunku

| Kod        | Treść                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FEN_K2_U05 | The graduate can use English in accordance with the requirements set out for level B2+ of the Common European Framework of Reference for Languages, as well as specialist English terminology in the field of physical sciences                                                                                                                        |
| FEN_K2_W01 | The graduate knows and understands in-depth selected facts, phenomena, concepts and theories specific to physics and complex relationships between them (constituting advanced general knowledge in the field of physical sciences and representing both key and other selected issues in the field of advanced detailed knowledge in this discipline) |
| FEN_K2_W05 | The graduate knows and understands the role of physical sciences in the context of fundamental dilemmas and challenges of modern civilization                                                                                                                                                                                                          |