

## Introduction to Metamaterials, Plasmonics, and Photonic Crystals Educational subject description sheet

## **Basic information**

| <b>Study programme</b><br>Fizyka             |                                                                                                | Didactic cycle<br>2023/24                    |                               |
|----------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|
| <b>Speciality</b><br>INFORMACJA KWANTOWA I S | SPINTRONIKA                                                                                    | Subject code<br>04FIZIKSS.24KU.04359.23      |                               |
| Organizational unit<br>Faculty of Physics    |                                                                                                | Lecture languages<br>English                 |                               |
| Study level<br>Second-cycle programme        |                                                                                                | <b>Course type</b><br>Elective               |                               |
| <b>Study form</b><br>Full-time               |                                                                                                | <b>Block</b><br>Complementary major subjects |                               |
| Education profile<br>General academic        |                                                                                                |                                              |                               |
| Subject coordinator                          | Andriy Serebryannikov                                                                          |                                              |                               |
| Lecturer                                     | Andriy Serebryannikov                                                                          |                                              |                               |
| <b>Period</b><br>Semester 3                  | Activities and hours <ul> <li>Lecture: 30, Exam</li> <li>Seminar: 15, Graded credit</li> </ul> |                                              | Number of<br>ECTS points<br>4 |

#### Goals

| Code | Goal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1   | The general objective is to give the students initial knowledge on theory and applications of metamaterials, plasmonics and photonic crystals. The lecture course is aimed to overview the basics, state-of-the-art, and perspectives in the areas of planar metamaterials, surface plasmons and photonic crystals. The emphasis will be put on physical scenarios, design approaches, and main applications. The emphasis will be also put on all-dielectric and plasmonic, gradient and unitary (multi-)functional metasurfaces and metadevices. |

# Subject learning outcomes

| Code                 | Outcomes in terms of                                                                                                                                                                    | Learning outcomes                                 | Examination methods                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|
| Knowledge - Student: |                                                                                                                                                                                         |                                                   |                                              |
| W1                   | lists the main types and explains the underlying<br>physics of metamaterials/metasurfaces used in<br>different parts of electromagnetic spectrum                                        | FIZ_K2_W01,<br>FIZ_K2_W02, FIZ_K2_W04             | "Open book" exam                             |
| W2                   | understands and can explain the origin and specifics<br>of the main physical scenarios and functionality<br>achievable by unitary and gradient metasurfaces for<br>various applications | FIZ_K2_W01,<br>FIZ_K2_W02, FIZ_K2_W04             | "Open book" exam,<br>Multimedia presentation |
| W3                   | understands and can explain the basic physical scenarios, advantages, and restrictions for the selected types of plasmonic structures                                                   | FIZ_K2_W01,<br>FIZ_K2_W02, FIZ_K2_W04             | "Open book" exam,<br>Multimedia presentation |
| W4                   | understands the basics of and differences between one- and two-dimensional photonic crystals                                                                                            | FIZ_K2_W01,<br>FIZ_K2_W02, FIZ_K2_W04             | "Open book" exam                             |
| W5                   | understands and can describe the specifics of the selected materials used for metamaterials/metasurfaces                                                                                | FIZ_K2_W01,<br>FIZ_K2_W02, FIZ_K2_W04             | "Open book" exam,<br>Multimedia presentation |
| Skills - Student:    |                                                                                                                                                                                         |                                                   |                                              |
| U1                   | can properly select or refine a proper physical and/or<br>mathematical model to solve a given theoretical or<br>design problem                                                          | FIZ_K2_U01, FIZ_K2_U02,<br>FIZ_K2_U03             | "Open book" exam                             |
| U2                   | can select a proper class/type of the structures and<br>list the basic design features depending on the<br>required application                                                         | FIZ_K2_U01, FIZ_K2_U02,<br>FIZ_K2_U03, FIZ_K2_U04 | "Open book" exam,<br>Multimedia presentation |
| U3                   | can perform a comparative analysis of two or more design routes to the same functionality                                                                                               | FIZ_K2_U01, FIZ_K2_U02,<br>FIZ_K2_U03             | Multimedia presentation                      |

## Study content

| No. | Course content                                                                                                                            | Subject learning<br>outcomes | Activities       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|
| 1.  | Introduction to metamaterials                                                                                                             | W1, U1, U2                   | Lecture          |
| 2.  | Metasurfaces quasiplanar functional metamaterials                                                                                         | W2, W3, U1, U2, U3           | Lecture          |
| 3.  | Selected functionalities of modern metasurfaces                                                                                           | W2, W3, U1, U2, U3           | Lecture          |
| 4.  | Specifics of choice of materials and design principles<br>of metamaterials/metasurfaces in different parts of<br>electromagnetic spectrum | W1, W2, W5, U2, U3           | Lecture          |
| 5.  | Basics of plasmonic structures (incl. plasmonic metasurfaces), surface plasmons, localized surface plasmons                               | W2, W3, W5, U1, U2           | Lecture, Seminar |
| 6.  | Introduction to one- and two-dimensional photonic crystals and photonic-crystal slabs                                                     | W4, U1, U2, U3               | Lecture, Seminar |
| 7.  | Metasurfaces with phase gradient created by shifted subwavelength resonances: deflection and focusing                                     | W2, U1, U2, U3               | Seminar          |

| No. | Course content                                                                                                                          | Subject learning<br>outcomes | Activities |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------|
| 8.  | Pancharatnam-Berry (geometric) phase based<br>gradient metasurfaces and few-layer unitary<br>metasurfaces for polarization manipulation | W2, U1, U2, U3               | Seminar    |
| 9.  | Unitary metasurfaces as color filters                                                                                                   | W2, U1, U2, U3               | Seminar    |
| 10. | Metadevices for polarimetry, asymmetric transmission and angular filtering                                                              | W2, U1, U2, U3               | Seminar    |
| 11. | Tunable metasurfaces                                                                                                                    | W2, U1, U2, U3               | Seminar    |

## Additional information

| Activities | Teaching and learning methods and activities                                                               |
|------------|------------------------------------------------------------------------------------------------------------|
| Lecture    | Lecture with a multimedia presentation of selected issues, Conversation lecture, Problem-<br>based lecture |
| Seminar    | Lecture with a multimedia presentation of selected issues, Problem-based lecture, Discussion               |

| Activities | Credit conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture    | The final grade will be based on the results of the open book exam. Everyone will receive three questions: 1 general question and 2 questions related to the research paper(s) on one topic, selected from the provided list of the research papers. The full answer for each question yields 1 point (pt) to the score.<br>Very good (bdb; 5,0): 3 pts<br>Good plus (+db; 4,5): 2.5 pts<br>Good (db; 4,0): 2 pts<br>Satisfactory plus (+dst; 3,5): 1.5 pts<br>Satisfactory (dst; 3,0): 1 pt<br>Unsatisfactory (ndst; 2,0): <1 pt |
| Seminar    | The final score (0-100%) consists of two components: (i) evaluation of the presentation (report)<br>- 75% contribution to final score and (ii) participation in the discussions - 25% contribution to<br>final score.<br>Very good (bdb; 5,0): 90-100% of final score<br>Good plus (+db; 4,5): 80-89% of final score<br>Good (db; 4,0): 70-79% of final score<br>Satisfactory plus (+dst; 3,5): 60-69% of final score<br>Satisfactory (dst; 3,0): 50-59% of final score<br>Unsatisfactory (ndst; 2,0): 0-49% of final score       |

#### Literature

#### Obligatory

- 1. R. Marques, F. Martin, and M. Sorolla. Metamaterials with negative parameters. Wiley Interscience, 2007, Ch. 1-3.
- 2. W. Cai and V. M. Shalaev. Optical metamaterials. New York: Springer, 2010, Ch. 2,4-6,8,9.
- 3. N. Engheta and R. W. Ziolkowski, eds. Metamaterials: physics and engineering explorations. John Wiley & Sons, 2006, Ch. 1,2.
- 4. S. A. Maier. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007, Ch. 2,3,5,8.
- 5. K. Sakoda, Optical properties of photonic crystals. Springer Science & Business Media, 2004, Ch. 2,4,6-8.
- K. Achouri and C. Caloz. Electromagnetic Metasurfaces: Theory and Applications. John Wiley & Sons, 2021, Ch. 1,2,5-7.

#### Optional

- 1. I. Brener, et al., eds. Dielectric Metamaterials: Fundamentals, Designs and Applications. Woodhead publishing, 2019.
- 2. K. Inoue and K. Ohtaka, eds. Photonic crystals: physics, fabrication and applications. Vol. 94. Springer Science & Business Media, 2004.
- 3. A.V. Zayats and S.A. Maier, eds. Active plasmonics and tuneable plasmonic metamaterials. John Wiley & Sons, 2013.
- 4. E. Semouchkina, Dielectric Metamaterials and Metasurfaces in Transformation Optics and Photonics. Elsevier, 2021.

| Activities                               | Activity hours* |
|------------------------------------------|-----------------|
| Lecture                                  | 30              |
| Seminar                                  | 15              |
| Preparation for classes                  | 16              |
| Reading the indicated literature         | 20              |
| Preparation of a multimedia presentation | 18              |
| Preparation for the exam                 | 21              |
|                                          |                 |
| Student workload                         | Hours<br>120    |
| Number of ECTS points                    | ECTS<br>4       |

## **Calculation of ECTS points**

\* academic hour = 45 minutes

# Efekty uczenia się dla kierunku

| Kod        | Treść                                                                                                                                                                                                                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIZ_K2_U01 | The graduate can use their knowledge to formulate and solve complex and unusual problems in the field of physical sciences; select and apply appropriate methods and tools necessary to solve a given problem (including advanced IT techniques), as well as adapt existing methods and tools or develop completely new ones                           |
| FIZ_K2_U02 | The graduate can find the necessary information in the professional literature, databases and other sources, in particular in scientific journals basic to physics, and perform critical analysis, synthesis and creative interpretation of the collected information                                                                                  |
| FIZ_K2_U03 | The graduate can formulate and test hypotheses related to simple research problems in physics (plan and perform observations, experiments, theoretical calculations or computer simulations and critically evaluate and discuss the results obtained)                                                                                                  |
| FIZ_K2_U04 | The graduate can prepare, for various audiences, oral presentations and written studies presenting specialized topics in the field of physical sciences in a communicative way, as well as debate on such topics                                                                                                                                       |
| FIZ_K2_W01 | The graduate knows and understands in-depth selected facts, phenomena, concepts and theories specific to physics and complex relationships between them (constituting advanced general knowledge in the field of physical sciences and representing both key and other selected issues in the field of advanced detailed knowledge in this discipline) |
| FIZ_K2_W02 | The graduate knows and understands in-depth selected research methods and tools as well as mathematical models used in physics                                                                                                                                                                                                                         |
| FIZ_K2_W04 | The graduate knows and understands main development trends in the discipline of physical sciences                                                                                                                                                                                                                                                      |