

## Introduction to neutron scattering Educational subject description sheet

#### **Basic information**

Study programme

Fizyka (Physics of Advanced Materials for Energy Processing)

**Speciality** 

-

Organizational unit

Faculty of Physics and Astronomy

Study level

Second-cycle programme

**Study form** 

Full-time

**Education profile** 

General academic

**Didactic cycle** 

2024/25

Subject code

04FENS.21S.03244.24

**Lecture languages** 

English

**Course type** 

Elective

**Block** 

specialty subjects

| Subject coordinator | Aleksandra Pajzderska |
|---------------------|-----------------------|
| Lecturer            | Aleksandra Pajzderska |

| Period     | Activities and hours | Number of   |
|------------|----------------------|-------------|
| Semester 1 | • Lecture: 30, Exam  | ECTS points |
|            |                      | 3           |

#### **Goals**

| Code | Goal                                                                                                                                                                                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C1   | The main goal of the module is to present principles of neutron scattering techniques and instrumentations, as well as their applications in different areas of research including physics, chemistry, biophysics, softmatter or nanotechnology. |

## **Subject learning outcomes**

Wygenerowano: 2025-06-08 05:51 1 / 4

| Code              | Outcomes in terms of                                                                 | Loorning outcomes                        | Examination methods |  |
|-------------------|--------------------------------------------------------------------------------------|------------------------------------------|---------------------|--|
| code              | Outcomes in terms of                                                                 | Learning outcomes                        | Examination methods |  |
| Knowle            | Knowledge - Student:                                                                 |                                          |                     |  |
| W1                | understands and knows neutron scattering method according to the plan of the course. | FEN_K2_W01,<br>FEN_K2_W02,<br>FEN_K2_W03 | Written exam        |  |
| Skills - Student: |                                                                                      |                                          |                     |  |
| U1                | can understand the specialized lecture given in<br>English                           | FEN_K2_U05                               | Written exam        |  |

# **Study content**

| No. | Course content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subject learning outcomes | Activities |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|
| 1.  | Neutron properties, basic theory of neutron scattering, Elastic (neutron diffraction), quasielastic and inelastic neutron scattering (neutron spectroscopy) Neutron scattering facilities and productions of neutrons Neutron detection, instrumentations and instrument components of spectrometers, diffractometers and reflectometers Methodology of measurements and access to neutron facilities The comparison of neutron scattering with complementary spectroscopic methods, like Xray diffraction, infrared absorption, dielectric and NMR spectroscopy Examples of using neutron methods in condensed physics and soft matter, in particular: in materials for energy conversion and energy storage, ionic and conducting systems, fuel cell, thin films, nanocomposites, porous systems, photovoltaic systems, biological systems, membranes, proteins, etc. | W1, U1                    | Lecture    |

## **Additional information**

| Activities | Teaching and learning methods and activities              |  |
|------------|-----------------------------------------------------------|--|
| Lecture    | Lecture with a multimedia presentation of selected issues |  |

| Activities | Credit conditions |
|------------|-------------------|
| Lecture    | Written exam      |

#### Literature

#### **Obligatory**

1. R. Hempelmann; Quasielastic neutron scattering and solid state diffusion; Claredon Press, Oxford, 2009

#### **Optional**

- 1. A. Furrer, J. Mesot, T. Strässle; Neutron Scattering in Condensed Matter Physics; World Scientific, 2009
- 2. L. Liyuan, R. Rinaldi, H. Schober; Neutron Applications in Earth, Energy and Environmental Sciences; Springer, 2009
- 3. G. L. Squires; Introduction to the Theory of Thermal Neutron Scattering; Dover Publications, 1996

## **Calculation of ECTS points**

| Activities               | Activity hours* |
|--------------------------|-----------------|
| Lecture                  | 30              |
| Preparation for classes  | 20              |
| Preparation for the exam | 40              |
| Student workload         | Hours<br>90     |
| Number of ECTS points    | <b>ECTS</b> 3   |

<sup>\*</sup> academic hour = 45 minutes

# Efekty uczenia się dla kierunku

| Kod                                                                                                                                    | Treść                                                                                                                                                                                                                                                                                                                                                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FEN_K2_U05                                                                                                                             | The graduate can use English in accordance with the requirements set out for level B2+ of the Common European Framework of Reference for Languages, as well as specialist English terminology in the field of physical sciences                                                                                                                        |  |
| FEN_K2_W01                                                                                                                             | The graduate knows and understands in-depth selected facts, phenomena, concepts and theories specific to physics and complex relationships between them (constituting advanced general knowledge in the field of physical sciences and representing both key and other selected issues in the field of advanced detailed knowledge in this discipline) |  |
| FEN_K2_W02 The graduate knows and understands in-depth selected research methods and tools as well mathematical models used in physics |                                                                                                                                                                                                                                                                                                                                                        |  |
| FEN_K2_W03                                                                                                                             | The graduate knows and understands in-depth selected computational methods and information technology tools and techniques used to solve complex problems in physics                                                                                                                                                                                   |  |